Universität Wien

260097 VO Physik an Teilchenbeschleuniger (2017S)

2.50 ECTS (2.00 SWS), SPL 26 - Physik

Details

Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

Mi 31.05.17 findet die Vorlesung von 11:00-13:00 Uhr im SMI-Seminarraum statt.

Mittwoch 26.04. 11:00 - 13:00 Kleiner Seminarraum, Zi.3510, Boltzmanngasse 5, 5. Stk., 1090 Wien
Donnerstag 27.04. 11:00 - 13:00 Kleiner Seminarraum, Zi.3510, Boltzmanngasse 5, 5. Stk., 1090 Wien
Mittwoch 03.05. 11:00 - 13:00 Kleiner Seminarraum, Zi.3510, Boltzmanngasse 5, 5. Stk., 1090 Wien
Mittwoch 10.05. 11:00 - 13:00 Kleiner Seminarraum, Zi.3510, Boltzmanngasse 5, 5. Stk., 1090 Wien
Mittwoch 17.05. 11:00 - 13:00 Kleiner Seminarraum, Zi.3510, Boltzmanngasse 5, 5. Stk., 1090 Wien
Mittwoch 24.05. 09:00 - 11:00 Kleiner Seminarraum, Zi.3510, Boltzmanngasse 5, 5. Stk., 1090 Wien
Mittwoch 14.06. 09:00 - 11:00 Kleiner Seminarraum, Zi.3510, Boltzmanngasse 5, 5. Stk., 1090 Wien
Mittwoch 21.06. 11:00 - 13:00 Kleiner Seminarraum, Zi.3510, Boltzmanngasse 5, 5. Stk., 1090 Wien
Mittwoch 28.06. 11:00 - 13:00 Kleiner Seminarraum, Zi.3510, Boltzmanngasse 5, 5. Stk., 1090 Wien

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

The lecture will provide an introduction to the field of theoretical
collider physics, which is providing the key predictions to particle
collider experiments such as those carried out at the Large Hadron
Collider (LHC) at CERN.

Emphasis will be put on dynamics involving the strong interaction,
modeled by Quantum Chromodynamics (QCD), covering both the emergence and complex dynamics of so-called jets of hadrons, as well as the structure of the colliding protons.

The lecture will establish basic concepts of collider physics and QCD
corrections as well as the calculational methods required to make
predictions for experimental observations. It further links to
state-of-the-art approaches used in today’s simulation of high energy
reactions.

The lecture is strongly relying on an introductory particle physics
course and some background in Quantum Field Theory. The courses
Teilchenphysik I and Teilchenphysik II therefore set the level of
prerequisites which interested students should be familiar with. Some
lecture slots will address computational methods, such that basic
programming skills in a high-level language like Python or C++, or
knowledge of Mathematica are desireable to cover some of the examples provided.

1 Fundamentals of QCD
2 Basic reactions, jets and event shapes
3 The Monte Carlo method
4 Next-to-leading order corrections in QCD
5 Infrared singularities and the subtraction method
6 Parton cascades and the simulation of jets
7 Overview of hadron collissions and event generators
8 The Drell-Yan process at NLO and parton strucure functions
9 Calculational and algorithmic techniques for complex reactions
10 Aspects of resummation and matching

Art der Leistungskontrolle und erlaubte Hilfsmittel

Written exam.

Mindestanforderungen und Beurteilungsmaßstab

particle physics 1, particle physics 2

Minimum requirements and assessment criteria
to be announced

Prüfungsstoff

Examination topics:
will be announced

Literatur

Homepage: http://homepage.univie.ac.at/simon.plaetzer/lectures/qcd-and-collider-physics/

Lecture notes (will be provided in the course of the lecture)

R.K. Ellis, W.J. Stirling, B.R. Webber: QCD and Collider Physics, Cambridge University Press

G. Dissertori, I. Knowles, M. Schmeling: Quantum Chromodynamics, Oxford Science Publications

A. Buckley et al., General-purpose event generators for LHC physics,
Phys.Rept. 504 (2011) 145-233, http://arxiv.org/abs/arXiv:1101.2599

CTEQ/MCnet summer school 2016, http://http//www.physics.smu.edu/scalise/cteq/schools/summer16/

Zuordnung im Vorlesungsverzeichnis

MaG 21, MaG 22, MaV 7

Letzte Änderung: Mo 07.09.2020 15:41